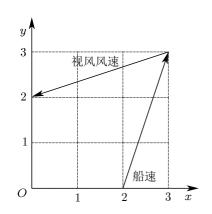
2025年普通高等学校招生全国统一考试(全国 I 卷)

数学

注意事项:

1. 答题前, 先将自己的姓名、	准考证号填写在试卷和答题卡	上,并将准考证号条形码粘
贴在答题卡上的指定位置。		


- 2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,写在试卷、草稿纸和答题卡上的非答题区域均无效。
- 3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷草稿纸和答题卡上的非答题区域均无效。
 - 4. 考试结束后,请将本试卷和答题卡一并上交。

— ,	选择题:本大题共	8 小题,每小题 5 分,共计 40 分.	每小题给出的四个选项中,只有一
	个选项是正确的.	请把正确的选项填涂在答题卡	相应的位置上.

个选项是止确的。	请把止确的选项填入	余在答题卡相应的位置	直上.
1. (1+5i)i 的虚部为			
A. -1	B. 0	C. 1	D. 6
$2.$ 设全集 $U = \{x x \}$	是小于9的正整数},集	長合 $A = \{1,3,5\}$,则 $\int_{\mathcal{U}}$	₇ A 中元素个数为
A. 0	B. 3	C. 5	D. 8
3. 若双曲线 C 的虚轴	由长为实轴长的√7倍	,则 C 的离心率为	
A. $\sqrt{2}$	B. 2	C. $\sqrt{7}$	D. $2\sqrt{2}$
4. 己知点 (a,0) (a>	$0)$ 是函数 $y = 2\tan(x)$	$-\frac{\pi}{3}$) 的图象的一个	对称中心,则 a 的最小值为
A. $\frac{\pi}{6}$	B. $\frac{\pi}{3}$	C. $\frac{\pi}{2}$	D. $\frac{4\pi}{3}$
5. 设 f(x) 是定义在 F	R 上且周期为2的偶函	函数,当 $2 \leqslant x \leqslant 3$ 时,	$f(x) = 5 - 2x$, $\iint f(-\frac{3}{4})$
A. $-\frac{1}{2}$	B. $-\frac{1}{4}$	C. $\frac{1}{4}$	D. $\frac{1}{2}$

- 6. 帆船比赛中,运动员可借助风力计测定风速的大小和方向,测出的结果在航海学中称为 视风风速,视风风速对应的向量,是真风风速对应的向量与船行风速对应的向量之和, 其中船行风速对应的向量与船速对应的向量大小相等,方向相反.表中给出了部分风 力等级、风速大小与名称的对应关系, 已知某帆船运动员在某时刻测得的视风风速对 应的向量与船速对应的向量如图(风速的大小和向量的大小相同,单位 m/s),则真风为
 - A. 轻风
- B. 微风
- C. 和风
- D. 劲风

等级	风速大小	名称
2	$1.1\sim3.3$	轻风
3	3.4~5.4	微风
4	$5.5 \sim 7.9$	和风
5	8.0~10.1	劲风

- 7. 若圆 $x^2 + (y+2)^2 = r^2(r > 0)$ 上到直线 $y = \sqrt{3}x + 2$ 的距离为1的点有且仅有2个,则r 的取值范围是
 - A. (0,1)
- B. (1,3)
- C. $(3, +\infty)$
- D. $(0, +\infty)$
- 8. 若实数 x, y, z满足 $2 + \log_2 x = 3 + \log_3 y = 5 + \log_5 z$, 则 x, y, z 的大小关系不可能是

 - A. x>y>z B. x>z>y C. y>x>z D. y>z>x
- 二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题 目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. 在正三棱柱 $ABC A_1B_1C_1$ 中, D为 BC中点,则
 - A. $AD \perp A_1C$

B. BC ⊥ 平面 AA₁D

C. $AD // A_1B_1$

- D. CC_1 // 平面 AA_1D
- 10. 设抛物线 $C:y^2=6x$ 的焦点为 F,过 F 的直线交 C 于 A, B, 直线 l 的方程是 $x=-\frac{3}{2}$, 过 A 向直线 l 作垂线,垂足为 D,过 F 且垂直于 AB 的直线交 l 于 E,则
 - A. |AD| = |AF|

B. |AE| = |AB|

C. $|AB| \ge 6$

D. $|AE| \cdot |BE| \ge 18$

11. 已知 $\triangle ABC$ 的面积为 $\frac{1}{4}$,若 $\cos 2A + \cos 2B + 2\sin C = 2$, $\cos A\cos B\sin C = \frac{1}{4}$, ,	则
---	-----	---

A.
$$\sin C = \sin^2 A + \sin^2 B$$

B.
$$AB = \sqrt{2}$$

C.
$$\sin A + \sin B = \frac{\sqrt{6}}{2}$$

D.
$$|AC|^2 + |BC|^2 = 3$$

三、填空题:本大题共3小题,每小题5分,共计15分.

- 12. 若直线 y = 2x + 5 是曲线 $y = e^x + x + a$ 的切线,则 $a = _____.$
- 13. 若一个正项等比数列的前 4 项和为 4,前 8 项和为 68,则该等比数列的公比为 ______.
- 14. 一个箱子里有 5 个相同的球,分别以 1~ 5 标号,从中有放回的取三次,记至少被取出一次的球的个数为 X,则 E(X) = ______.

四、解答题:本题共 5 小题,共 77 分。解答应写出文字说明、证明过程或演算步骤.

15.(13分)

为研究某疾病与超声波检查结果的关系,从做过超声波检查的人群中随机抽样调查了1000人,得到如下列联表:

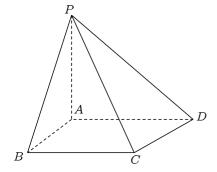
超声波检查结果组别	正常	不正常	合计
患该疾病	20	180	200
未患该疾病	780	20	800
合计	800	200	1000

- (1) 记超声波检查结果不正常者患该疾病的概率为p,求p的估计值;
- (2) 根据小概率值 $\alpha = 0.001$ 的独立性检验,分析超声波检查结果是否与患该疾病有关.

附:
$$\chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,其中 $a+b+c+d=n$

$P(\chi^2 \geqslant k)$	0.050	0.010	0.001
k	3.841	6.635	10.828

16.(15分)


设数列
$$\{a_n\}$$
 中, a_1 = 3, $\frac{a_{n+1}}{n} = \frac{a_n}{n+1} + \frac{1}{n(n+1)}$.

- (1) 证明:数列 $\{na_n\}$ 为等差数列;
- (2) 给定正整数 m, 设函数 $f(x) = a_1x + a_2x^2 + \dots + a_mx^m$, 求 f'(-2).

17.(15分)

如图所示的四棱锥 P - ABCD 中, $PA \perp$ 平面 ABCD, $BC \parallel AD$, $AB \perp AD$.

- (1) 证明:平面 *PAB* 上 平面 *PAD*;
- (2) 若 $PA = AB = \sqrt{2}$, $AD = \sqrt{3} + 1$, BC = 2, P,
- B, C, D在同一个球面上,设该球面的球心为O.
 - (i)证明: O在平面 ABCD上;
 - (ii)求直线 AC与直线 PO 所成角的余弦值.

18.(17分)

设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的离心率为 $\frac{2\sqrt{2}}{3}$,下顶点为 A,右顶点为 B, $|AB| = \sqrt{10}$.

- (1)求椭圆C的标准方程;
- (2)已知动点P不在y轴上,点R在射线AP上,且满足 $|AP| \cdot |AR| = 3$.
 - (i)设P(m,n),求R的坐标(用m,n表示);
- (ii)设O为坐标原点,Q是C上动点,直线OR的斜率是直线OP的斜率的 3 倍,求 |PQ|的最大值.

19.(17分)

- (1)求函数 $f(x) = 5\cos x \cos 5x$ 在 $\left[0, \frac{\pi}{4}\right]$ 的最大值;
- (2)给定 $\theta \in (0,\pi)$,设 a 为实数,证明:存在 $y \in [a-\theta,a+\theta]$,使得 $\cos y \leq \cos \theta$;
- (3)若存在 φ ,使得对任意x,都有 $5\cos x \cos(5x + \varphi) \leq b$,求b的最小值.